Jordan
O ONI Open Source
Association

]
TECHNICAL REPORT

Jordan

Measuring Facebook
Live-Streaming
Interference during
Protests

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

]
Introduction

Last December, anti-austerity protests erupted in Jordan against a controversial fiscal
reform bill. The protests ensued once a week for several weeks thereafter. Amid the
protests, locals reported that they were unable to view live-streaming from Facebook.
But they also reported that viewing live-streaming was otherwise possible when

protests were not taking place.

Therefore, our first hypothesis was that perhaps people in Jordan couldn’t load videos
on Facebook because they were using overloaded networks (rather than Facebook

Live Stream being interfered with).
To examine this hypothesis and investigate further, we:

e Enumerated Facebook cache servers to identify and map out those located

in Jordan.

e Tested the Facebook cache servers in Jordan, using OONI Probe. OONI

measurements presented anomalies, providing signals of potential interference.

e To explore further and in more depth, we ran a series of experiments using
cURL.

Mosts tests were run on Zain Jordan (AS48832), while some tests were also run on
Umniah (Batelco Jordan) (AS9038), DAMAMAX (Al-Hadatheh Lil-Itisalat) (AS47887),
VTEL (AS50670), and Orange Jordan (Jordan Data Communications) (AS8376). The
testing period started on 30" November 2018 and concluded on 10" January 2019.

We tested Amman-based and London-based video cache servers.

As part of such testing, we were able to rule out the hypothesis that Facebook users

in Jordan couldn’t live-stream due to overloaded networks.

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

Our findings suggest that Facebook Live Stream was temporarily interfered with in
Jordan during protests between 20" December 2018 to 10" January 2019.

In this report we share our findings in detail, as these methodologies could potentially

be useful in examining similar cases elsewhere in the world.

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

Facebook Video
Streaming Infrastructure

According to Under the hood: Broadcasting live video to millions (a December 3, 2015

blog post by Federico Larumbe and Abhishek Mathur on code . £b. com) Facebook live
streaming takes advantage of Facebook’s multi-layered cache infrastructure and uses
a mixture of HTTP Live Streaming and RTMP to deliver content to users. This cache
infrastructure is called FBCDN, i.e., Facebook Content Distribution Network. A June
2016 recap of a May 2016 talk by Larumbe during Networking@Scale adds the
precious bit of information that Facebook was at the time also experimenting with
the MPEG-DASH streaming technique. A subsequent talk by Sachin Kulkarni at QCon
London 2017 indicates that in 2017 Facebook was definitely transitioning over

increasingly using MPEG-DASH as its main streaming technique.

In this section we describe Facebook’s cache infrastructure, and how Facebook is
using MPEG-DASH streaming to deliver video content. This discussion will allow us to
contextualise our measurements and to justify our choice of focusing on the HTTP

and HTTPS reachability of Facebook cache servers during the protests.

Facebook’s cache infrastructure

FBCDN is a multi-layered cache architecture to make video streaming (as well as
accessing pictures) as smooth and swift as possible for users worldwide. We share a
simplified description of how this architecture works, based on our understanding of
“An analysis of Facebook photo caching”, a 2013 article included in the Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles.

https://code.fb.com/ios/under-the-hood-broadcasting-live-video-to-millions/

Measuring Facebook Live-Streaming
Interference during Protests in Jordan :

This picture, adapted
from Arun Moorthy's
talk “Connecting the
World: A look inside
Facebook’s Networking
Infrastructure” slides,
should probably be
helpful to follow the
discussion (but keep in
mind that Facebook
infrastructure has
evolved significantly
since then to include
9. Data Center many more servers).
© Edge PoP

Let's assume we have a live video streaming on Facebook. This live video streaming

has a specific unique content identifier. When you access this content by navigating
on Facebook, the code of the webpage (or of the mobile app) requests an edge cache
node to return that specific bit of content. That is, into a web server deployed into
(most likely) your Internet Service Provider (ISP) that may be storing a copy of (bits of)
the specific live video you want to see. The place where the edge cache is deployed is
often called Point of Presence (PoP). This is what is indicated with the Edge PoP label
in the above figure.

As mentioned, your browser will issue an HTTP request using the specific content
identifier, and the edge cache will return the video immediately to you, if present.
Since the PoP is part of your ISP, if the video is cached, you'll likely get a response
back in a few tens of milliseconds.

Otherwise, the edge cache will reissue the original request on your behalf to a higher-
level cache called origin cache. That is another web server that is most likely deployed
into a Facebook data center inside of Facebook’s portion of the internet (this is what

is labelled as datacenter in the above figure). This data center is further away from

Measuring Facebook Live-Streaming
Interference during Protests in Jordan :

you (as we'll see in a moment). Therefore, the request and the response would need
to travel more and would perhaps encounter cross traffic on the way. The bottom line
is that you will get a response back in a few hundred milliseconds. That is, you will
stare for some noticeable (by you) amount of time at the spinner announcing to you

that the video will eventually load.

Likewise, if the content is not available, the origin cache will forward the request to
the ultimate authority, that is, the Facebook servers that actually store the data, called
haystack in the aforementioned article. These servers are further away, therefore,
when accessing a video that is only in the haystack, you will potentially need to wait

for several hundred milliseconds.

To keep you as happy as possible, Facebook strives to keep frequently requested
videos in a specific region as close as possible to users. To implement that, all the
caches make sure that they store frequently requested videos, such that subsequent
requestors will get it as quickly as possible. The unique identifier for each video is
what enables that optimisation. The difference in performance between accessing a
video (or other content) using an edge cache vis a vis accessing the same content
from an higher-level cache is shown in the following picture (also adapted from Arun
Moorthy’s slides).

In this example, you can
see that accessing a
rabbit’s picture from the
Seoul cache takes 240
milliseconds, while it
would have taken 600
milliseconds to fetch it

TCP Connect: 253ins from Oregon.

SSL Session: 450m.,
HTTP Response: ouums

Mapping Facebook caches in Jordan

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

When researching information useful to write this report, we encountered the

excellent work done by Anurag Bhatia in 2018 in mapping Facebook edge caches

worldwide. He also provides a list of the caches he discovered (last updated on 30th

August 2018). Inspired by his methodology, we enumerated all the Facebook edge

caches in Jordan in December 2018.

There are 9 cache servers in edge nodes, serving Facebook videos, distributed
between several operators, namely Zain (3), Orange (2), Umniah (2), DAMAMAX (1)
and VTEL (1).

The following table shows the nodes and their respective operators and IP addresses.

DOMAIN NAME

video.
video.
video.
video.
video.
video.
video.
video.
video.

famml-1
famm2-1
famm2-2
famm3-1
famm3-2
famm4-1

fammé6-1
famm7-1

.fna.
.fna.
.fna.
.fna.
.fna.
.fna.
famm5-1.
.fna.
.fna.

fna

fbcdn.
fbcdn.
fbcdn.
fbcdn.
fbecdn.
fbcdn.
.fbcdn.
fbcdn.
fbecdn.

net
net
net
net
net
net
net
net
net

IP ADDRESS

151.248.101.210

46.32.101.18

94.142
37.152
37.152
178.20
82.212
212.34
212.34

.38.210
.6.210
.3.146
.189.146
.80.146
.28.82
.28.146

OPERATOR

ASN59605
ASN48832
ASN48832
ASN9038
ASN9038
ASN50670
ASN47887
ASN328126
ASN328126

Mena Levant W.l.l (Zain Group - Wholesale)
Linkdotnet-Jordan

Linkdotnet-Jordan

Umniah Lil-Hawatef Al-Mutanagelah Co.

Umniah Lil-Hawatef Al-Mutanagelah Co.

Vtel Holdings Limited/jordan Co.

DAMAMAX Jordan

Jordan Telecommunications Company (Orange-cdn)
Jordan Telecommunications Company (Orange-cdn)

The FBCDN uses IATA airport codes to differentiate hostname locations, in a logical

pattern similar to video.fXXX1-1.fna.fbcdn.net, where XXX is the 3-letter closest

airport IATA code, while the digits 1-1 could be assumed to represent the first (i.e.

number 1) point of presence (PoP) in the ISP numbered 1 in that area.

Additional PoPs are numbered sequentially. For example, the string video.famm5-
1.fna.fbecdn.net indicates that the first (1) Facebook CDN PoP is hosted in Amman
(AMM airport code) at an ISP numbered as 5 (DAMAMAX in this case), whereas a
video hosted at video.flhrl-1.fna.fbcdn.net would be served from an ISP in
London (LHR).

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

What's important to mention in this context is also that Facebook uses different
domain names for caches devoted to video and to static content. A video cache has a
name starting with video, while a static cache (e.g. for images) has a name starting
with the word static. This is interesting because, in theory, it allows an adversary to
prevent someone from accessing video caches without hindering their ability to

download images and other static content (e.g. JavaScript).

How are live videos served on Facebook?

This section shows the results of a live experiment showing how Facebook live
streaming works in practice. With the help of a friend who is on Facebook (thanks!),
we created a closed group where we shared a live video streaming. Using the Google

Chrome developer tools, we captured and analysed the requests.

This experiment was performed on 6™ June 2019. The video was really not popular,
since it only had one viewer. Both the person streaming the live video and the person
viewing it were located in Italy. More specifically, the person viewing the video was

located in Catania, Sicily. The following describes what we observed.

The video playback started with the following HTTP request (where several details

have of course been redacted to avoid leaking sensitive information in this report):

GET /video/video_data_async/?video_id=ID&supports_html5_video=true&... HITP/1.1
Host: www.facebook.com

Note that the request was sent to Facebook’s main domain (www. facebook. com),
therefore no cache has been hit at that point. Also note that the query string included

the redacted video ID and the information that we supported HTML5 video.

The HTTP/2 response to this request was positive (i.e. : status: 200)and the body
included a 10 KiB piece of JavaScript, a relevant excerpt of which we share

afterwards.

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

for (53D

{
"payload" : {
"hd_src" : "https:\/\/video-fcol-1.xx.fbcdn.net\/[snip].mpd?[arguments]",

What'’s interesting in this response is that it contains the domain name of a video
cache (FCO is the Rome Fiumicino airport IATA code). It's also relevant to note that
the URL returned in the JavaScript contains a file name ending with the mpd
extension. MPD means Media Presentation Description in this context, and identifies
an XML file name used by MPEG-DASH to describe the various pieces of which a
streamable video is composed.

The subsequent HTTP request fetches the MPD document from the Rome cache and

the successful response includes the MPD document, of which we show an excerpt:

<MPD publishTime="2019-06-06T01:48:58-07:00">
<Period>
<AdaptationSet>
<Representation
mimeType="video/mp4"
FBQualityLabel="360p">
<SegmentTemplate
initialization="BASEURL-init.m4v"
media="BASEURL-$Time$.m4v">
<SegmentTimeline>
<S t="800" d="2000"/>
<S t="2800" d="2033"/>
<S t="4833" d="2034"/>
</SegmentTimeline>

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

You can see that the time when the live video was published is emphasized, that the
video is using the mp4 (i.e. MPEG-4) technology, and that the video consists of an
initial segment (BASEURL-init.m4v) and three additional segments (BASEURL -
init.m4v). Consistently with the MPEG-DASH standard, each video is divided into

segments of tentatively equal duration.

For each additional segment, the MPD indicates the time when it starts (relative to
the beginning of the video; in milliseconds) and the segment duration. So, for
example, the second segment (emphasized) starts after 2.8 seconds and has a

duration of roughly two seconds.

If we continue to analyse the output provided by Chrome’s developer tools, we see
for example that, at a certain point, the browser fetches the emphasized segment
with this request:

GET BASEURL-2800.m4a
Host: video-fcol-1.xx.fbcdn.net

What is relevant in this request is that it is directed towards the Rome cache and that

the URL used explicitly indicates the video segment starting after 2.8 seconds.

This spot experiment is similar to earlier, spot-on experiments that we performed in
December 2018 from Jordan, when helping friends to understand what live streaming

was not working well for them, as described in the following section.

Facebook Live streaming issues

During the protests (between December 2018 to January 2019), people in Jordan

reported that they were unable to load most of the videos from Facebook.

When they clicked on a video to reproduce it, a loading spinner would run for several

seconds until an error on a black background would appear.

10

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

w

ry Screenshot taken by

Facebook users in
Live Videos Jordan trying to play a

live video during the
testing period, which
resulted in an error
message.

Something .

Went Wrong

Sorry, we're having
trouble playing this video.

Learn More

This behaviour was common on different devices, web browsers on desktop and
mobile, and on the Facebook Android and iPhone applications. However, the video

thumbnails were visible, while some other non-live videos were playable.

Knowing, as mentioned above, that Facebook uses servers to provide static content
(like video thumbnails) that are separate to the ones streaming videos, we ensured
that static content caches were available, whereas video caches were not. We
performed this check using Firefox developer tools and browsing on Facebook. Any
failed video request did not prevent Facebook from serving us static content, like
video thumbnails.

Apart from loading videos, users in Jordan were, in fact, able to use Facebook
normally, as traffic to other content did not appear to be subject to any anomalies. It
is also worth mentioning that other online video services, like YouTube, were not
affected (of course, this is also because their content is not provided by Facebook’s
infrastructure). On 20" December 2018, though, we received reports that some
people in Jordan were unable to play Periscope videos on Twitter during the protests,
but we were unable to examine and confirm this. To conclude, the only user-reported

anomalies were limited to the traffic from Facebook’s video cache servers.

11

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

OONI Probe tests

In an attempt to examine why Facebook users in Jordan couldn't live stream, we ran

OONII Probe to measure the accessibility of Facebook’s video cache servers.

More specifically, we ran OONI Probe’s Web Connectivity test to measure the
potential DNS, TCP/IP, or HTTP blocking of Facebook video cache servers. These
tests were run from local vantage points in Jordan on Zain Jordan (AS48832), Umniah
(Batelco Jordan) (AS9038), DAMAMAX (Al-Hadatheh Lil-Itisalat) (AS47887), VTEL
(AS50670), and Orange (Jordan Data Communications) (AS8376) between 30
November 2018 to 20" December 2018. All measurements collected from these tests

have been openly published.
We found that the testing of Facebook video cache servers presented anomalies.

Videos that were unable to load were supposed to be served from the video cache
servers of Facebook, but requesting such videos resulted in connection reset errors
and generic timeout errors (while the normal behaviour would have been to get a
successful response from the server). Through OONI measurements, we observed
these anomalies on Zain Jordan (AS48832), DAMAMAX (Al-Hadatheh Lil-Itisalat)
(AS47887), and VTEL (AS50670) on 30th November 2018 and 13th December 2018
(during protests). No anomalies were observed on Umniah (Batelco Jordan) (AS9038)

and Orange (Jordan Data Communications) (AS8376) during the testing period.

What's more, we noticed network anomalies not only with Amman cache servers, but
also with London cache servers when accessed from Jordan. We also observed that
timeout errors were more common for London cache servers, while Amman cache

servers reacted with a mixture of timeout errors and connection reset errors.

The testing of Facebook video cache servers didn't always present anomalies. In fact,
most measurements established successful connections and DNS lookups. The graph
below illustrates the normal and anomalous measurements collected from local
vantage points when Facebook video cache servers were tested between 30"
November 2018 to 20" December 2018.

12

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

Testing of Facebook video cache servers in Jordan

Measure Names
false

November 30, November30, November30, November30, December13, December13, December 13,
0185 PM 201

e December 13 cemb December 14, cemb December 14 ember 20, ;
Probe Asn 20133 PM 2018 4 PM 201 87 PM 20183 PM 2018 4 PM 20185 PM 2018 6 PM 20187 PM 2018 8 PM 2018 9 PM 2018 11 AM 2018 12 PM 2018 4 PM 2018 6 PM 2018 4 PM I hitp-failure

- R m
@ oonI

Source: OONI Measurements

It's worth highlighting though that the anomalies were observed (on several networks)
more frequently during protests, rather than before and after the protests. This led us
to speculate that perhaps the anomalies were caused by network overload, rather
than by deliberate interference. To understand whether this hypothesis was sound,

we investigated further through custom experiments.

Custom network measurement tests

We ran cURL experiments on Zain Jordan (AS48832) during and after the protests in
Amman, on 20" December 2018, 27" December 2018, 3™ January 2019, and 10"
January 2019. Each experiment was performed multiple times. Below we share a
sample output and packet captures pertaining to a single experiment (since they were

all similar).

We started by checking whether one of the Facebook caches in Amman (named
famm2-2 where the £ probably means Facebook and amm most likely indicates
Amman, as explained above) was reachable using the HTTP protocol. The following is
the result that we obtained during the protests, where the relevant log lines have

been emphasized:

$ curl -v http://video.famm2-2.fna.fbcdn.net
* Rebuilt URL to: http://video.famm2-2.fna.fbcdn.net/

13

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

*

Trying 94.142.38.210. ..
Connected to video.famm2-2.fna.fbcdn.net (94.142.38.210) port 80 (#0)
GET / HTTP/1.1
Host: video.famm2-2.fna.fbecdn.net
User-Agent: curl/7.47.0
Accept: */*

*

Recv failure: Connection reset by peer
Closing connection @

* % V.V V V V

curl: (56) Recv failure: Connection reset by peer

The logs emitted by cURL indicate that (1) the connection was established and (2)

after the request was sent, we received a “Connection reset by peer” error.

This error is generated when TCP receives a segment that does not look correct in the
context of the connection. A classical textbook example is when you have a persistent
connection to a server that crashes and reboots: attempting to write to such a
connection will cause the server to send you a reset error because it rebooted and it
knows nothing about the TCP segment that you just sent it (see Unix Network

Programming, Section 5.15).

This “Connection reset by peer” erroris also generated when a TCP peer wants
to close the connection and force the other peer to throw away any queued data.
This property of resetting a TCP connection is also exploited by the TCP reset attack,
when a fake segment is spoofed to cause a TCP endpoint to shutdown immediately

without sending any queued data.

From the logs presented so far, we cannot say directly that the reset segment was the
result of an attack. Certainly, it is telling that the reset is received after sending the
HTTP request, which contains the video cache host header in plaintext (as shown in
the cURL logs). However, we cannot exclude that high load caused by people
accessing the video cache may be causing the server application to misbehave in
some weird way and reset the connection. We will continue discussing this topic

more in detail later, when we analyse the packet captures.

14

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

We also tried using HTTPS, obtaining the following logs:

curl -v https://video.famm2-2.fna.fbcdn.net
Rebuilt URL to: https://video.famm2-2.fna.fbcdn.net/
Trying 94.142.38.210...
Connected to video.famm2-2.fna.fbcdn.net (94.142.38.210) port 443 (#0)
found 148 certificates in /etc/ssl/certs/ca-certificates.crt
found 597 certificates in /etc/ssl/certs
ALPN, offering http/1.1
gnutls_handshake() failed: Error in the pull function.
Closing connection @
curl: (35) gnutls_handshake() failed: Error in the pull function.

x % %k %k % % % % A

As before, we establish a TCP connection, then some error occurs. The error message
is not very informative, but we understand that the GnuTLS library used by cURL
encountered some fatal error during the TLS handshake. That is, during the initial
protocol exchange where certificates are transmitted and security properties are
negotiated. It does actually seem that we do not make much progress in the
handshake, since we do not see output pertaining to the negotiated TLS version, nor

we do see output regarding the server certificate.

We again suspect that this is an attack. However, in this case the logs do not even
provide us with a clear indication that the connection was reset. All we know is that
there was some error in the “pull function” sometime during the TLS handshake.
Because “pull function”is a GnuTLS term to indicate the recv system call (or an
API compatible replacement), and because we do not see any information on the TLS
version in the logs, it is reasonable to assume that the error that we see occurs after
we have sent the initial packet of the handshake (“offering http/1.1"), in the recv
that waits for the server’s reply. But, again, we cannot exclude that, maybe due to

overload, the application server crashes and the connection is closed.

When running the measurements, we were at this point tempted to go straight to the
packet captures, to see the sequence of network events, the errors, and other low

level properties that may help to understand whether this could be an attack or not.

15

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

However, since packet captures are not always available in all environments (e.g.
when running measurements from mobile devices), we decided to take advantage of
this situation in which each test led to a failure, to experiment whether further
application level measurements could increase our confidence that we were not
facing an overloaded server. Hence, the idea to apply a technique that OONI started
adding to Measurement Kit during the MAMI hackathon in Aberdeen.

This technique calls for connecting to the video cache server and initiating a TLS
handshake for another domain, such as www.google.com instead of video.famm2-
2.fna.fbcdn.net. Of course, this experiment should always fail because a Facebook
video cache server should not be able to authenticate as a Google server. In this
specific case, we expected an overloaded server to interrupt the connection attempt
as abruptly as before. On the contrary, if the interruption depended on some external
factor correlated with the video cache name, it was more likely to see a full handshake
followed by the client terminating the connection because it cannot authenticate the

server as a Google server. This is indeed what happened:

$ curl -v --resolve www.google.com:443:94.142.38.210 \
--header 'Host: video.famm2-2.fna.fbcdn.net' \
https://www.google.com/
Added www.google.com:443:94.142.38.210 to DNS cache
Hostname www.google.com was found in DNS cache
Trying 94.142.38.210...
Connected to www.google.com (94.142.38.210) port 443 (#0)
found 148 certificates in /etc/ssl/certs/ca-certificates.crt
found 597 certificates in /etc/ssl/certs
ALPN, offering http/1.1
SSL connection using TLS1.2 / ECDHE_ECDSA_AES_128_GCM_SHA256
server certificate verification OK
server certificate status verification SKIPPED
SSL: certificate subject name (*.famm2-2.fna.fbcdn.net) does not match target
host name 'www.google.com'
* Closing connection @
curl: (51) SSL: certificate subject name (¥*.famm2-2.fna.fbcdn.net) does not match
target host name 'www.google.com'

 k k Kk k x Xk sk 3k Xk Xk

16

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

As you can see, we successfully established a TCP connection to the specific cache IP
address, performed a successful TLS handshake (emphasized in the logs), and received
the server certificate. Then, cURL noticed that the certificate presented by the server
was not valid (“does not match”) for the domain we requested (www . google . com)
and, as expected, the connection was closed. This additional experiment greatly
increased our confidence that we were not facing an overloaded server, but rather
some active form of network interference. To explore further, let's look at the packet

captures.

The following is the HTTP experiment capture (where the relevant fields mentioned

in the discussion have been emphasized):

$ tshark -r canned_3_1_1la.acp

1 0.000000 192.168.8.102 - 94.142.38.210 TCP 74 53920 - 80 [SYN] Seqg=0
Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=35602001 TSecr=0 WS=128

2 9.028508 94.142.38.210 - 192.168.8.102 TCP 74 80 - 53920 [SYN, ACK] Seg=0
Ack=1 Win=27960 Len=0 MSS=1400 SACK_PERM=1 TSval=2764436819 TSecr=35602001 WS=256

3 0.028619 192.168.8.102 - 94.142.38.210 TCP 66 53920 - 80 [ACK] Seg=1 Ack=1
Win=29312 Len=0 TSval=35602008 TSecr=2764436819

4 ©.028835 192.168.8.102 - 94.142.38.210 HTITP 157 GET / HTITP/1.1

5 0.058483 94.142.38.210 - 192.168.8.102 TCP 54 80 - 53920 [RST, ACK] Seg=1
Ack=92 Win=8222720 Len=0

We see the TCP three-way handshake (packets 1-3), then the request is sent (packet
4), and then we finally receive a reset (RST) segment (packet 5). The round-trip time
(RTT) of the reset segment (i.e. the difference between the timestamp of packet 5 and
the one of packet 4, i.e. 30 ms) is compatible with the RTT of the three-way
handshake (29 ms; measured as the difference between the timestamp of packet 2

and the one of packet 1).

$ tshark -r canned 3 1 1b.acp
1 0.000000 192.168.8.102 — 94.142.38.210 TCP 74 36702 — 443 [SYN] Seq=0
Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=35604812 TSecr=0 WS=128

17

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

2 0.054466 94.142.38.210 - 192.168.8.102 TCP 74 443 - 36702 [SYN, ACK] Seq=0
Ack=1 Win=27960 Len=0 MSS=1400 SACK_ PERM=1 TSval=4160958854 TSecr=35604812 WS=256

3 0.054550 192.168.8.102 - 94.142.38.210 TCP 66 36702 — 443 [ACK] Seg=1 Ack=1
Win=29312 Len=0 TSval=35604826 TSecr=4160958854

4 0.124798 192.168.8.102 - 94.142.38.210 TLSvl 349 Client Hello

5 0.169943 94.142.38.210 - 192.168.8.102 TCP 54 443 - 36702 [RST, ACK] Seg=1
Ack=284 Win=8222720 Len=0

The main difference here is that the RST segment is received after the TLSv1 Client
Hello packet (i.e. the packet with which a TLS client greets a server). Again, the RTT of
the RST is quite close to the RTT of the three-way handshake. (To be more specific,
there is a 10 ms difference, but we also saw a lower RTT in the previous attempt, and

since we were using a mobile network, some RTT fluctuations are to be expected.)

Before we focus on the third capture, let’s have a closer look at the Client Hello:

$ tshark -V -2 -R ssl -r canned 3 1 1b.acp
[snip]
Secure Sockets Layer
TLSvl Record Layer: Handshake Protocol: Client Hello
Content Type: Handshake (22)
Version: TLS 1.0 (0x0301)
Length: 278
Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 274
Version: TLS 1.2 (0x0303)
[snip]
Extension: server name (len=32)
Type: server name (0)
Length: 32
Server Name Indication extension
Server Name list length: 30
Server Name Type: host_name (0)

18

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

Server Name length: 27
Server Name: video.famm2-2.fna.fbcdn.net
[snip]

We snipped through most of the output, but the intent here was to show that the
Hello packet includes the plaintext name of the server to connect (see the
penultimate line). This is the SNI (Server Name Indication) extension. The fact that the
server that you are connecting to is in cleartext means that this information can be
exploited to prevent you from connecting to that server. (There is ongoing work to
standardize ESNI, or Encrypted SNI.)

By looking at these two captures, we conclude that the connection is reset in both
cases after some plaintext containing the server name is sent: in the HTTP case, this
information is part of the request headers (as shown in cURL logs), while for HTTPS
this name is part of the Client Hello (as we have just seen above). This fact was
already quite obvious already from the HTTP cURL logs, but was hidden by obscure
logging in the HTTPS experiment.

Now let’s see what happens in the experiment where we change the SNI, where it

seems that we can perform a more comprehensive TLS handshake:

$ tshark -r canned 3 1 1c.acp

1 0.000000 192.168.8.102 - 94.142.38.210 TCP 74 37016 - 443 [SYN] [...]

2 0.047798 94.142.38.210 - 192.168.8.102 TCP 74 443 . 37016 [SYN, ACK] [...]
3 0.047912 192.168.8.102 - 94.142.38.210 TCP 66 37016 - 443 [ACK] [...]

4 0.129705 192.168.8.102 - 94.142.38.210 TLSvl 336 Client Hello

5 0.166521 94.142.38.210 - 192.168.8.102 TCP 66 443 - 37016 [ACK] [...]

6 0.168029 94.142.38.210 - 192.168.8.102 TLSv1l.2 1454 Server Hello

7 0.168088 192.168.8.102 - 94.142.38.210 TCP 66 37016 - 443 [ACK] [...]

8 0.170216 94.142.38.210 - 192.168.8.102 TCP 1454 443 - 37016 [ACK] [...]

9 0.170250 192.168.8.102 - 94.142.38.210 TCP 66 37016 - 443 [ACK] [...]

10 0.170482 94.142.38.210 - 192.168.8.102 TLSvl.2 339 Certificate,

Server Key Exchange, Server Hello Done

19

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

11 0.170497 192.168.8.102 - 94.142.38.210 TCP 66 37016 - 443 [ACK] [...]
12 0.172287 192.168.8.102 - 94.142.38.210 TLSv1l.2 141 Client Key Exchange
13 0.234964 94.142.38.210 - 192.168.8.102 TCP 66 443 - 37016 [ACK] [...]
14 0.235051 192.168.8.102 - 94.142.38.210 TLSv1l.2 117

Change Cipher Spec, Encrypted Handshake Message
15 0.255009 94.142.38.210 - 192.168.8.102 TCP 66 443 - 37016 [ACK] [...]
16 0.255888 94.142.38.210 - 192.168.8.102 TLSv1l.2 324 New Session Ticket,
Change Cipher Spec, Encrypted Handshake Message

17 0.260381 192.168.8.102 — 94.142.38.210 TLSv1l.2 97 Encrypted Alert

18 0.288728 94.142.38.210 - 192.168.8.102 TLSv1l.2 97 Encrypted Alert

19 0.288988 192.168.8.102 - 94.142.38.210 TCP 66 37016 - 443 [RST, ACK] [...]
20 0.290564 94.142.38.210 - 192.168.8.102 TCP 66 443 - 37016 [FIN, ACK] [...]
21 0.290638 192.168.8.102 - 94.142.38.210 TCP 54 37016 - 443 [RST] [...]

For readability, we have omitted part of the tshark output using an ellipsis. The TCP
connection is established successfully (packets 1-3), then the Client Hello is sent
(packet 4), and the Server Hello is received (packet 6). More messages are exchanged,
including packet 10, which contains the certificate in cleartext (an issue that is fixed in
TLSv1.3; in this capture the client and the server agreed to use TLSv1.2). Then, there
is an exchange of encrypted alerts (packets 17 and 18) where most likely cURL is
telling the server to shutdown the TLS channel because, as expected, the server’s
certificate is not valid for www. google. com. Finally, cURL resets the connection
(incidentally this is a legitimate user of the RST, because cURL really wants to make

sure that any data that the other end may have queued is not sent).

After cursorily looking into the packet captures, we are increasingly confident that we
are not seeing an overloaded server. Among other things, there does not seem to be
significant queue buildup near the server, since the RTTs are reasonably low. Also, the
packet captures helped to see explicitly that the TLS handshake is interrupted by a
reset when the video cache server name is present, and continues unhindered
otherwise. An interesting experiment that we should probably have performed would
have been to connect to the server using HTTP and forcing the HTTP host header to

be different (e.g., again, www . google . com). However, for this set of experiments, we

20

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

were mainly focusing on TLS and on validating the field of the SNI blocking detection
technique that we recently added to Measurement Kit (OONI aims to include this in
the OONI Probe mobile app).

To conclude our analysis, we decided to perform a more in-depth pass, to see
whether it was possible to detect more interesting low level details. One such detail is
the value of the IP ID field used by the reset packets. See what happens in the HTTP

experiment:

$ tshark -T fields -e frame.number -e ip.src -e tcp.srcport -e ip.dst \
-e tcp.dstport -e ip.id -e tcp.flags.reset -E header=yes \
-E separator=, -r canned_3_1 la.acp
frame.number, ip.src,tcp.srcport,ip.dst,tcp.dstport,ip.id,tcp.flags.reset
1,192.168.8.102,53920,94.142.38.210,80,0x00008e24,0
2,94.142.38.210,80,192.168.8.102,53920,0x00000000,0
3,192.168.8.102,53920,94.142.38.210,80,0x00008e25,0
4,192.168.8.102,53920,94.142.38.210,80,0x00008e26,0
5,94.142.38.210,80,192.168.8.102,53920,0x00003412, 1

And in the HTTPS experiment:

$ tshark -T fields -e frame.number -e ip.src -e tcp.srcport -e ip.dst \

-e tcp.dstport -e ip.id -e tcp.flags.reset -E header=yes \

-E separator=, -r canned_3 1 1b.acp
frame.number,ip.src,tcp.srcport,ip.dst,tcp.dstport,ip.id,tcp.flags.reset
1,192.168.8.102,36702,94.142.38.210,443,0x00003b7b,0
2,94.142.38.210,443,192.168.8.102,36702,0x00000000,0
3,192.168.8.102,36702,94.142.38.210,443,0x00003b7c,0
4,192.168.8.102,36702,94.142.38.210,443,0x00003b7d, 0
5,94.142.38.210,443,192.168.8.102,36702,0x00003412, 1

In both cases, the fifth packet is the packet that resets the connection (as indicated by
the latest column having a value of 1) and in both cases the IP ID value is
0x00003412 (this is indicated in the penultimate column of the output).

21

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

Now, a constant IP ID field is really unexpected. This field is a 16-bit ID, nowadays
only used for reassembly purposes. Historically, such a field was a global counter
incremented for each packet but, after the idle scan was invented by Salvatore
Sanfilippo, most operating systems changed the IP ID to, at least, be depending on the
source and the destination addresses and protocols. Nowadays, it should be quite
uncommon to see packets with an hard-coded ID value different from zero. Linux sets
the ID to zero when sending a packet that must not be fragmented. There is an
interesting security discussion regarding whether this is a good thing (because it
prevents exfiltrating data) or a bad thing (because it allows the fingerprinting of Linux

boxes).

The third packet capture allows us to appreciate in more detail the IP ID pattern
used by the video cache. Let’s process again the third packet capture, this time just
printing the packet sequence number and the ID (please, use the index to match
packets presented here with the complete listing of the third packet capture

presented above):

$ tshark -T fields -e frame.number -e ip.id -E header=yes -E separator=
-r canned_3 1 l1c.acp "ip.src==94.142.38.210"

frame.number,ip.id

2 ,0x00000000

5,0x0000c84a

6,0x0000c84b

8,0x0000c84c

10,0x0000c84d

13,0x0000c84e

15,0x0000c84f£

16,0x0000c850

18,0x0000c851

20,0x0000c852

The above output is very interesting because it is consistent with the ID evolution
pattern that we see for a Linux box running v4.18, as well as for another box running
v4.15. Also, the kernel code for generating such IDs should be generating linear

increments for a specific source address, destination address, and protocol unless “a

b \

22

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

generator is seldom[ly] used”, in which case Linux perturbs the ID to make an idle scan
much more complex. We conclude that the video cache server seems to behave like a
Linux box, which is probably what Facebook uses, and a hard-coded ID for the reset
packets is not compatible at all with the behaviour we have observed from such a

server.

Also the time to live (TTL) field can help show how the reset segments are anomalous.

We limit our analysis to the second and the third capture.

Here'’s the TTL in the second capture, where the packet with index 5 is containing the

reset flag:

$ tshark -T fields -e frame.number -e ip.ttl -E header=yes -E separator=, \
-r canned_3 1 1b.acp "ip.src==94.142.38.210"

frame.number, ip.ttl

2,88

5,62

And here is the third capture:

$ tshark -T fields -e frame.number -e ip.ttl -E header=yes -E separator=, \
-r canned_3_1 l1c.acp "ip.src==94.142.38.210"

frame.number,ip.ttl

2,88

5,88

6,88

8,88

10,88

13,88

15,88

16,88

18,88

20,88

It is interesting to note that packets that we believe to be sent by the legitimate

23

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

server always have a TTL of 88 while the supposedly injected packet has a TTL of 62.
This fact, again, seems to suggest that we are dealing with a packet generated by

another IP entity.

24

Measuring Facebook Live-Streaming
Interference during Protests in Jordan

]
Conclusion

When we heard that demonstrators in Jordan couldn’t live-stream on Facebook, we
investigated whether this was due to overloaded networks, or if Facebook Live

Stream was interfered with.

We started off by mapping out the Facebook cache servers to identify those in Jordan
and we subsequently ran OONI Probe tests to measure their availability. OONI
measurements presented anomalies on Zain Jordan (AS48832), DAMAMAX (Al-
Hadatheh Lil-Itisalat) (AS47887), and VTEL (AS50670) on 30th November 2018 and
13th December 2018. No anomalies were observed on Umniah (Batelco Jordan)
(AS9038) and Orange (Jordan Data Communications) (AS8376) during the testing

period.

To investigate further and in more depth, we ran a series of custom network
measurement tests using cURL. These tests, run on Zain Jordan (AS48832) between
20th December 2018 to 10th January 2019, allowed us to rule out the initial
hypothesis (that Facebook users in Jordan couldn't live-stream due to overloaded
networks) and to confirm that Facebook Live Stream was temporarily interfered with

during the protests.

We share our research and methodologies to potentially support other research

efforts investigating similar incidents in other countries around the world.

25

